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The elastic modulus of drawn n/Ion 6 
fibres 

Prevorsek and co-workers [1], in a previous paper 
on the structure and properties of nylon 6 fibres, 
stated that analysis of mechanical properties of 
fibres indicates strong lateral interactions between 
microfibrils. Using the Halpin-Tsai equation [2], 
they found from the value of the parameter ~, that 
the crystal aspect ratio (length/diameter) required 
to predict correctly the experimental modulus 
from the moduli and volume fractions of the 
constituent crystal and amorphous phases was 
much smaller than the actual aspect ratio deter- 
mined by small-angle X-ray scattering and electron 
microscopy, for a draw ratio of 3 : 1. The crystalline 
regions were thus considered to be behaving 
mechanically as wide platelets extending over 
several microfibrils. 

The Halpin-Tsai equation predicts the overall 
material elastic modulus E from the moduli of 
the matrix (amorphous, EA) and the inclusions 
(crystal, Ec) 

[ ] Ec/EA--1 1 + ~r/• , with r/ - E EA[ l - r~xJ  E c / E A + ~  

(1) 
where X is the volume fraction of inclusions. The 
value of the parameter ~ is of an empirical nature 
and depends on, for example, fibre geometry, 
packing geometry and loading conditions. Halpin 
and Kardos [3], for example, used Equation 1 to 
estimate the modulus in the fibre direction of a 
short-fibre reinforced composite for fibres of 
various aspect ratios. They found for lid values 
from about 8 to 100 that ~ could be identified 
with 21/d, where d is the fibre diameter. When 

>> 1, Equation 1 approaches the well-known 
Voigt upper bound or parallel coupling case (also 
called the rule of mixtures) 

Ev = EA(1 -- X) + EeX, (2) 

Prevorsek etal. [1], having obtained a value for 
of about 0.02, also equated ~ to 2lid, and thus 

obtained a very small value for the effective 
crystal aspect ratio. 

It will now be shown in the simplest manner 
possible that, when ~ is small, it cannot generally 
be identified with 2lid. In the limit as ~-+ 0, 
Equation 1 becomes 
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1/E R = (1 -- x)/EA + X/Ec, (3) 

which is the well-known Reuss lower bound, or 
the case of series connection. Here, the overall 
compliance is the "weighted" sum of the individual 
compliances. The result of Prevorsek and co- 
workers [ 1 ], ~ = 0.02, indicates that the material is 
behaving approximately in this way, i.e. the crystal 
(C) and amorphous (A) regions are coupled in series, 
and there are virtually no lateral constraints on the 
regions to prevent extension to the maximum 
possible amount. Hence, this is a lower bound on 
the modulus. The result makes no assertions about 
the aspect ratio of the crystals. 

Let us now consider a hypothetical two-phase 
material in which very wide "C" and "A" platelets 
are stacked alternately with their normals parallel 
to the specimen axis. Since the "C" regions are 
much stiffer than the "A" regions, we shall assume 
here for the sake of simplicity that the crystal 
inclusions are rigid, and also that the "A" regions 
are isotropic. In the limit as lid -~ 0, the modulus 
normal to the stack of platelets is then given by 

(1 -- X) [(1 + VA)(1 -- 2VA)] 
l / E -  -EA t ( I_VA) ] ,  (4) 

where VA is Poisson's ratio of the "A" regions. 
Only if v A = 0 will this equation be the same as 
Equation 3 (with Ee = oo). For v A = 0.5 (incom- 
pressibility condition) the modulus normal to the 
platelets becomes infinite. In an actual platelet 
composite, as we imagine the aspect ratio to 
decrease towards zero, the modulus normal to the 
platelets will thus increase. For Poisson's ratio VA 
approaching 0.5, this increase will be very marked, 
and large lateral forces will occur which constrain 
the "A" regions and prevent their extension parallel 
to the lamellar normals. 

In conclusion to this section, there is no justifi- 
cation for assuming that a small value of ~ can be 
identified with a small aspect ratio of inclusions. 

We shall now apply very simple series-parallel 
type coupling schemes to reassess the behaviour of 
nylon 6 fibres, using the actual data given by 
Prevorsek etal. [1] (see Table I). From the table, 
it can be seen that the modulus E increased from 
4.80 to 5.50 x l0 s N cm -2 on drawing further 
from 3 to 5.35 times, even though the crystaUinity 
X had decreased from 0.56 to 0.34. Representative 
volume elements (RVE) are shown (in two- 
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T A B L E  I Data for nylon6 (results adapted from 
Prevorsek et  al. [ 1 ] 

Parameter Draw ratio 

3:1 5.35:1 

Microfibril diameter, d (A) 119 74 
(or crystal width) 

Crystal length, l~ (A) 59 61 
Amorphous length, l A (A) 30 32 
Long period, (le + IA) (A) 89 93 
Crystal aspect ratio, Ic/d 0.48 0.8 
Crystal modulus, E c 25 25 

(10 s N cm -2) 
Amorphous modulus, E A 2.34 3.26 

(10 s N cm -2) 
Crystal volume fraction, • 0.56 0.34 
Experimental modulus, Eexp 4.80 5.50 

(10 s Ncm -2) 

dimensions) in Fig. 1. The crystals (C) are lined up 
at equal heights in the microfibrils along the fibre 
direction (Z) in accordance with Prevorsek and 
co-workers [ 1 ]. '~ represents amorphous material 
between the crystals within the microfibrils, while 
" I "  represents the noncrystallized, intermicro- 
fibrillar matter. The volume fractions of the three 
regions can be calculated from the data given in 
Table I for the two draw ratios considered. In 
what follows, it is assumed that the modulus of 
the I regions is the same as that of the A regions. 
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Figure 1 Representative volume element for nylon 6 fibre. 
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Scheme 1: Paul's approximate method. Firstly, the 
data is analysed by applying Paul's approximate 
method [4] to evaluate the predicted modulus E. 
The RVE is divided into infinitesimal slices with 
normals parallel to the specimen direction Z. In 
each slice the strain is assumed to be uniform. 
The slices are then integrated in series to cover 
the RVE, i.e. 

1 az 
E- = EA + (Ec--EA)Ac(Z) ' (S) 

where Ae(Z ) is the distribution of the crystaJline 
"inclusion". For our case this type of coupling is 
shown in Fig. 2. 

Scheme2: Microfibrillar model. As a second 
approach, the coupling scheme will be adopted 
in which the C and A regions are coupled in series, 
and the I material is coupled in parallel to the 
microfibril. The appropriate equation for the 
modulus E is 

E=-~- A+ I-- 

VA -l 

X - - +  
EA Ee ' 

where VI, VA, Vc and V are the volumes of I, A, C 
and total material in the RYE, respectively. 

It is important to note that, although these 
models appear to resemble the model of 
Takayanagi, Imada and Kajiyama [5], they differ 
in a major way. In the Takayanagi model, the 
parameters ~ and X indicate the extent to which 
the material is showing series or parallel coupling, 
rather like the parameter ~ in the Halpin-Tsai 
equation. The parameters r and X bear no direct 
link to the geometry of the individual phases in 
the RVE, except that r �9 X = 1 -- X. 

In the models described here, definite regions 
of the RVE have been assumed to couple so as to 
satisfy one or the other of the series or parallel 
bounds. 

The predictions of these models are shown in 
Table II. It appears that the coupling Scheme 2 
agrees best with the experimental results. It is 
inferred from this finding that each microfibril 
should be regarded as a series connection of 
crystal and amorphous components with relatively 
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T A B L E I I Elastic modulus predictions 

Predicted modulus (10 s N cm -2) Draw Ratio 

3:1 5.35:1 

Halpin-Tsai equation 6.34 6.02 
(with measured aspect ratios) 

Scheme 1: Paul's approximate 
method 5.71 6.65 

Scheme 2: Microfibril model 5.31 5.50 
Experimental value 4.80 5.50 

the Voigt upper bound, as expected for long, 
parallel constituents. These considerations seem to 
argue against being able to describe drawn nylon 6 
fibres as a composite material where the crystals are 
embedded in a homogeneous amorphous matrix. 
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Figure 2 Coupling schemes used in the analysis. 

little lateral constraint, such that its behaviour 
approaches the Reuss lower bound. The assembly 
of long microfibrils is interspersed with intermicro- 
fibrillar regions, the behaviour of which approaches 
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